1 Answer part (ii) of this question on the insert provided.

The proposal for a major building project was accepted, but actual construction was delayed. Each year a new estimate of the cost was made. The table shows the estimated cost, $£ y$ million, of the project t years after the project was first accepted.

Years after proposal accepted (t)	1	2	3	4	5
Cost (£y million)	250	300	360	440	530

The relationship between y and t is modelled by $y=a b^{t}$, where a and b are constants.
(i) Show that $y=a b^{t}$ may be written as

$$
\begin{equation*}
\log _{10} y=\log _{10} a+t \log _{10} b . \tag{2}
\end{equation*}
$$

(ii) On the insert, complete the table and plot $\log _{10} y$ against t, drawing by eye a line of best fit. [3]
(iii) Use your graph and the results of part (i) to find the values of $\log _{10} a$ and $\log _{10} b$ and hence a and b.
(iv) According to this model, what was the estimated cost of the project when it was first accepted?
(v) Find the value of t given by this model when the estimated cost is $£ 1000$ million. Give your answer rounded to 1 decimal place.

2 (i) Find $\sum_{k=2}^{5} 2^{k}$.
(ii) Find the value of n for which $2^{n}=\frac{1}{64}$.
(iii) Sketch the curve with equation $y=2^{x}$.

3 You are given that $\log _{10} y=3 x+2$.
(i) Find the value of x when $y=500$, giving your answer correct to 2 decimal places.
(ii) Find the value of y when $x=-1$.
(iii) Express $\log _{10}\left(y^{4}\right)$ in terms of x.
(iv) Find an expression for y in terms of x.

4 (i) Express $\log _{a} x^{4}+\log _{a}\left(\frac{1}{x}\right)$ as a multiple of $\log _{a} x$.
(ii) Given that $\log _{10} b+\log _{10} c=3$, find b in terms of c.

5 Answer part (ii) of this question on the insert provided.

The table gives a firm's monthly profits for the first few months after the start of its business, rounded to the nearest $£ 100$.

Number of months after start-up (x)	1	2	3	4	5	6
Profit for this month (£y)	500	800	1200	1900	3000	4800

The firm's profits, $£ y$, for the x th month after start-up are modelled by

$$
y=k \times 10^{a x}
$$

where a and k are constants.
(i) Show that, according to this model, a graph of $\log _{10} y$ against x gives a straight line of gradient a and intercept $\log _{10} k$.
(ii) On the insert, complete the table and plot $\log _{10} y$ against x, drawing by eye a line of best fit.
(iii) Use your graph to find an equation for y in terms of x for this model.
(iv) For which month after start-up does this model predict profits of about $£ 75000$?
(v) State one way in which this model is unrealistic.

Not to scale

Fig. 9
The graph of $\log _{10} y$ against x is a straight line as shown in Fig. 9 .
(i) Find the equation for $\log _{10} y$ in terms of x.
(ii) Find the equation for y in terms of x.

7 (i) Granny gives Simon $£ 5$ on his 1 st birthday. On each successive birthday, she gives him $£ 2$ more than she did the previous year.
(A) How much does she give him on his 10th birthday?
(B) How old is he when she gives him $£ 51$?
(C) How much has she given him in total when he has had his 20th birthday present?
(ii) Grandpa gives Simon $£ 5$ on his 1st birthday and increases the amount by 10% each year.
(A) How much does he give Simon on his 10th birthday?
(B) Simon first gets a present of over $£ 50$ from Grandpa on his nth birthday. Show that

$$
n>\frac{1}{\log _{10} 1.1}+1
$$

Find the value of n.

