## 1 Answer part (ii) of this question on the insert provided.

The proposal for a major building project was accepted, but actual construction was delayed. Each year a new estimate of the cost was made. The table shows the estimated cost,  $\pounds y$  million, of the project *t* years after the project was first accepted.

| Years after proposal accepted $(t)$ | 1   | 2   | 3   | 4   | 5   |
|-------------------------------------|-----|-----|-----|-----|-----|
| Cost (£y million)                   | 250 | 300 | 360 | 440 | 530 |

The relationship between y and t is modelled by  $y = ab^t$ , where a and b are constants.

(i) Show that  $y = ab^t$  may be written as

$$\log_{10} y = \log_{10} a + t \log_{10} b.$$
 [2]

- (ii) On the insert, complete the table and plot  $\log_{10} y$  against *t*, drawing by eye a line of best fit. [3]
- (iii) Use your graph and the results of part (i) to find the values of  $\log_{10} a$  and  $\log_{10} b$  and hence a and b. [4]
- (iv) According to this model, what was the estimated cost of the project when it was first accepted? [1]
- (v) Find the value of t given by this model when the estimated cost is £1000 million. Give your answer rounded to 1 decimal place. [2]

2 (i) Find 
$$\sum_{k=2}^{5} 2^k$$
. [2]

- (ii) Find the value of *n* for which  $2^n = \frac{1}{64}$ . [1]
- (iii) Sketch the curve with equation  $y = 2^x$ . [2]
- 3 You are given that  $\log_{10} y = 3x + 2$ .

| (i) Find the value of x when $y = 500$ , giving your answer correct to 2 decimal places. | [1] |
|------------------------------------------------------------------------------------------|-----|
| (ii) Find the value of y when $x = -1$ .                                                 | [1] |
| (iii) Express $\log_{10}(y^4)$ in terms of x.                                            | [1] |
| (iv) Find an expression for <i>y</i> in terms of <i>x</i> .                              | [1] |
|                                                                                          |     |

## PhysicsAndMathsTutor.com

4 (i) Express 
$$\log_a x^4 + \log_a \left(\frac{1}{x}\right)$$
 as a multiple of  $\log_a x$ . [2]

(ii) Given that 
$$\log_{10} b + \log_{10} c = 3$$
, find b in terms of c. [2]

## 5 Answer part (ii) of this question on the insert provided.

The table gives a firm's monthly profits for the first few months after the start of its business, rounded to the nearest  $\pounds 100$ .

| Number of months after start-up $(x)$ | 1   | 2   | 3    | 4    | 5    | 6    |
|---------------------------------------|-----|-----|------|------|------|------|
| Profit for this month $(\pounds y)$   | 500 | 800 | 1200 | 1900 | 3000 | 4800 |

The firm's profits,  $\pounds y$ , for the *x*th month after start-up are modelled by

$$y = k \times 10^{ax}$$

where a and k are constants.

- (i) Show that, according to this model, a graph of  $\log_{10} y$  against x gives a straight line of gradient a and intercept  $\log_{10} k$ . [2]
- (ii) On the insert, complete the table and plot  $\log_{10} y$  against x, drawing by eye a line of best fit.

[3]

[1]

- (iii) Use your graph to find an equation for y in terms of x for this model. [3]
- (iv) For which month after start-up does this model predict profits of about  $\pounds75\,000?$  [3]
- (v) State one way in which this model is unrealistic.





The graph of  $\log_{10} y$  against *x* is a straight line as shown in Fig. 9.

| (i)           | Find the equation for $\log_{10} y$ in terms of <i>x</i> . | [3] |
|---------------|------------------------------------------------------------|-----|
| ( <b>ii</b> ) | Find the equation for y in terms of x.                     | [2] |

(ii) Find the equation for y in terms of x.

7 (i) Granny gives Simon £5 on his 1st birthday. On each successive birthday, she gives him £2 more than she did the previous year. (A) How much does she give him on his 10th birthday? [2] (B) How old is he when she gives him  $\pounds 51$ ? [2] (C) How much has she given him **in total** when he has had his 20th birthday present? [2] (ii) Grandpa gives Simon £5 on his 1st birthday and increases the amount by 10% each year. [2] (A) How much does he give Simon on his 10th birthday? (B) Simon first gets a present of over £50 from Grandpa on his *n*th birthday. Show that

$$n > \frac{1}{\log_{10} 1.1} + 1.$$

Find the value of *n*.

6

[5]